A sulfur- and tyramine-regulated Klebsiella aerogenes operon containing the arylsulfatase (atsA) gene and the atsB gene.
نویسندگان
چکیده
The structural gene for arylsulfatase (atsA) of Klebsiella aerogenes was cloned into a pKI212 vector in Escherichia coli. Deletion analysis showed that the atsA gene with the promoter region was located within a 3.2-kilobase cloned segment. In E. coli cells which carried the plasmid, the synthesis of arylsulfatase was repressed by various sources of sulfur; the repression was relieved, in each case, by tyramine. Transfer of the plasmid into atsA or constitutive atsR mutant strains of K. aerogenes resulted in complementation of atsA but not of atsR. The nucleotide sequence of the 3.2-kilobase fragment was determined. Two open reading frames, the atsA gene and an unknown gene (atsB), were found. These are located between a potential promoter and a transcriptional terminator sequence. Deletion analysis suggests that atsB is a potential positive factor for the regulation of arylsulfatase. Analysis of the amino acid sequences of the first 13 amino acids from the N terminus of the purified secreted arysulfatase agrees with that of the nucleotide sequence of atsA. The leader peptide extends over 20 amino acids and has the characteristics of a signal sequence. Primer extension mapping of transcripts generated in vivo suggests that the synthesis of mRNA starts at a site 31 or 32 bases upstream from the ATG initiation codon of the atsB gene. By Northern (RNA) blot analysis of the transcripts induced by tyramine, we found a 2.7-kilobase transcript which is identical in size to the total sequence of the atsB and atsA genes. Thus, the ats operon is composed of two cistrons and is regulated by sulfur and tyramine.
منابع مشابه
Catabolite repression and derepression of arylsulfatase synthesis in Klebsiella aerogenes.
When a mutant (Mao(-)) of Klebsiella aerogenes lacking an enzyme for tyramine degradation (monoamine oxidase) was grown with d-xylose as a carbon source, arylsulfatase was repressed by inorganic sulfate and repression was relieved by tyramine. When the cells were grown on glucose, tyramine failed to derepress the arylsulfatase synthesis. When grown with methionine as the sole sulfur source, the...
متن کاملThe sulfur-regulated arylsulfatase gene cluster of Pseudomonas aeruginosa, a new member of the cys regulon.
A gene cluster upstream of the arylsulfatase gene (atsA) in Pseudomonas aeruginosa was characterized and found to encode a putative ABC-type transporter, AtsRBC. Mutants with insertions in the atsR or atsB gene were unable to grow with hexyl-, octyl-, or nitrocatecholsulfate, although they grew normally with other sulfur sources, such as sulfate, methionine, and aliphatic sulfonates. AtsRBC the...
متن کاملPosttranslational modification of serine to formylglycine in bacterial sulfatases. Recognition of the modification motif by the iron-sulfur protein AtsB.
Calpha-formylglycine is the catalytic residue of sulfatases. Formylglycine is generated by posttranslational modification of a cysteine (pro- and eukaryotes) or serine (prokaryotes) located in a conserved (C/S)XPXR motif. The modifying enzymes are unknown. AtsB, an iron-sulfur protein, is strictly required for modification of Ser(72) in the periplasmic sulfatase AtsA of Klebsiella pneumoniae. H...
متن کاملAlternative pathways for siroheme synthesis in Klebsiella aerogenes.
Siroheme, the cofactor for sulfite and nitrite reductases, is formed by methylation, oxidation, and iron insertion into the tetrapyrrole uroporphyrinogen III (Uro-III). The CysG protein performs all three steps of siroheme biosynthesis in the enteric bacteria Escherichia coli and Salmonella enterica. In either taxon, cysG mutants cannot reduce sulfite to sulfide and require a source of sulfide ...
متن کاملGenetic analysis, using P22 challenge phage, of the nitrogen activator protein DNA-binding site in the Klebsiella aerogenes put operon.
The nac gene product is a LysR regulatory protein required for nitrogen regulation of several operons from Klebsiella aerogenes and Escherichia coli. We used P22 challenge phage carrying the put control region from K. aerogenes to identify the nucleotide residues important for nitrogen assimilation control protein (NAC) binding in vivo. Mutations in an asymmetric 30-bp region prevented DNA bind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 172 4 شماره
صفحات -
تاریخ انتشار 1990